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Abstract 

This  paper deals with the gravi-quantum mechanical  interaction on the level of  the  first 
quant isa t ion and in the f ramework of  a metric theory o f  gravitation (no field quantisat ion).  
The interaction is in t roduced by embedding  the quan tum mechanics  of  the otherwise 
unaffected (i.e. 'free') spin-½ particle in the  given curved space-time of  the 3-flat expanding 
Rober tson-Walker  universe. The metr ic  acts thereby as an external  field. The  corresponding 
Hilbert space formalism is established in interpreting the generally covariant theory of the 
Dirac field in the R iemann  space in quest ion as the Dirac representat ion o f  the spin-½ 
particle in the Schr~Sdinger picture. The  evolut ion operator  is then extracted out  of  the  
general relativistic Dirac equation,  while contract ions  of  the symmetr ic  energy m o m e n t u m  
tensor with the  tetrad vectors o f  the ieference sys tem lead to the operators of  energy, 
linear m o m e n t u m  and total angular m o m e n t u m .  The  temporal  behaviour o f  the  corre- 
sponding expecta t ion values is calculated. 

1. Method and Basic Assumptions 

This paper deals with the gravi-quantum mechanical interaction on the level 
of first quantisation and in the framework of a metric theory of gravitation. 
The interaction is thereby introduced by embedding the quantum mechanics 
of the particle in a given curved space-time, which represents the unquantised 
'external' (i.e. unaffected) 'gravitational' field. The main purpose of this paper 
is to establish first of all the corresponding quantum mechanical formalism 
(i.e. Hilbert space, dynamical equation, fundamental operators) for the example 
of otherwise unaffected (i.e. 'free') Dirac particles in a 3-flat expanding universe 
Later, as an application of the formalism, the tempiral behaviour of the mean 
values of energy, linear momentum and total angular momentum are calculated. 
Further applications will be given in a subsequent paper (Audretsch, 1973). 

This treatment is of interest for the following reasons: It is usual to con- 
sider General Relativity on the one hand and Quantum Mechanics on the other 
as describing entirely different parts of physical reality that there is neither the 
necessity nor the possibility of bringing these two very conceptually different 
theories together. Leaving aside the fact that this situation is unsatisfactory 

Copyright  © 1974 Plenum Publishing Company  Limited. No part o f  this publicat ion may  
be reproduced,  stored in a retrieval system, or t ransmit ted,  in any form or by any means,  
electronic mechanical ,  photocopying,  microfilming, recording or otherwise,  wi thout  
wri t ten permission of  Plenum Publishing Company  Limited. 

23 323 



324 J. AUDRETSCH 

from the point of view of the unity of physics (gravitation as space-time 
geometry is universally influencing every process), it is furthermore dangerous 
to use results of 'everyday' physics in circumstances where strong gravitational 
fields and high accelerations are characteristic. The physical behaviour of matte1 
under such extreme conditions is largely unknown to the present day. Strong 
space-time curvature may cause physically relevant deviations from special 
relativistic quantum mechanics in the exterior and interior of massive stars, by 
the influence of gravitational waves and at the very early rapidly expanding 
stages of the universe. Simple objects for which the influence of the expansion 
of the universe on matter can be studied quantum mechanically are the freely 
moving Dirac particles. 

Restrictions and Assumptions 

We will make the following restrictions and assumptions: 

(A1) Quantum theory: Level of the first quantisation (i.e. no field 
quantisation). 

(A2) Metric theory of gravitation: An unquantised metric acts as an 
external field. The gravitational field caused by the particle itself is 
therefore neglected ('test'-particle). 

(A3) External fields: Apart from the metric field there are no further fields 
acting on the particle. 

(A4) Universe: The metric field of the curved space-time is that of a 
homogeneous and isotropic universe as described by the 3-flat 
Robertson-Walker line-element. 

(As) Topology: Leaving apart the singularity at the origin of time, the 
manifold has Euclidian topology E (4). 

It is difficult to avoid the 'test'-particle approach of A2 because the prob- 
ability interpretation of quantum mechanics prevents a consistent way of 
coupling a classical metric field to quantised matter (compare for the quan- 
tised Dirac field, Arnowitt & Kannenberg (1967)). On the other hand, the 
attempts to quantise the gravitational field have not yet reached a satisfactory 
stage (compare, e.g., Brill & Gowdy (1970)). By Aa and As the analogy to 
the Minkowski space treatment is made easy. The effects of a non-Minkowskian 
topology, e.g. the discretisation of eigenvalue spectra, are avoided and the 
consequences of the expansion are stressed. This may be justified by the fact 
that in reality an electron wave function ends at 'the wall of the laboratory' 
while the time dependence of the metric remains locally effective. 

Method. The formulation of the gravi-quantum mechanical interaction 
given below is largely determined by the characteristic properties of the theories 
A 1 and A2 which are to be combined. On the one hand we have as starting 
point the metric field of the theory A2 which represents the unification of the 
two basic concepts: gravitation and space-time geometry. Accordingly we have 
to incorporate metric effects at two points: 

(i) The metric influences, as a guiding field, the motion of particles and 
physical fields. 
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(ii) A measurement can at least in principle be reduced to a measurement 
of space and time intervalg between events. These distances, and there- 
fore the measuring results, are determined by the metric. 

On the other hand we have to incorporate as characteristics of the quantum 
theory A1 its probability interpretation and dynamics, i.e. the fact that the 
change in time of a quantum mechanical system takes place in a threefold way: 

(a) The physical state changes continuously under the influence of external 
fields. This is described by an evolution operator. 

(b) The operators representing observables can be explicitly time-dependent, 
(c) Measurement of an observable changes the state into an eigenstate of the 

corresponding operator. The measuring device is thereby as a macro- 
scopic object part of classical physics. 

We fulfill the requirements stated above in postulating that the covariant 
theory of  the Dirac field ~(x)  in the space-time in question represents the 
Dirac spin-position representation of the spin-½ particle in the SehrOdinger 
picture. The Dirac position operator refers in contrast to the Newman-Wigner 
position operator of the Foldy-Wouthuysen representation to'a particular 
space-time point ('point' position operator). The corresponding 6-function 
eigenstates contain necessarily positive and negative energy components.~ 
This additional degree of freedom makes a four-dimensional spin space 
necessary. The Newman-Wigner and other position operators have the more 
physical properties but describe a frame dependent average position of the 
extansion h/me ('mean' position operator). Because the influence of the metric 
is a strictly local one, we have to base the incorporation of the gravitational 
interaction on the Dirac position operator. Therefore, because an external field 
is present, we cannot exclude negative energy states from the very first. The 
particle concept has to be used in this wider sense. 

In order to be able to discuss the behaviour of the energy states of different 
sign, to pass to another picture or to change the representation by means of, 
for example, a Foldy-Wouthuysen type transformation, we have to formulate 
the interaction dynamics and the corresponding operators of energy and 
momentum in the framework of a Hilbert space formalism. In Section 4 we 
construct the abstract Hilbert space H of the states 1 ',9 ) of the system and 
establish the connection 

• (x)~ f~) (1.1) 

In Section 5 we unite (i) and (a) in extracting the evolution operator out of the 
general relativistic Dirac equation 

covariant Dirac equation +~ evolution operator (1.2) 

Finally, to combine the points (ii), (b) and the classical description of the 
measuring device (compare (c)), we introduce the observer field h~4) and a 

$ Newton & Wigner (1949), Foldy & Wouthuysen (1950), Feshbach & Villars (1958), 
Fleming (t965). 
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family of  hypersurfaces gZ in the space-time and postulate as a correspondence 
principle the equal i ty  of  the mean  value ( ~  Id l  • > of  an operator  d and the 
corresponding classical expression for the observable, as cons t ructed  with the 
general relativistic symmetr ic  ene rgy -momen tum tensor:  

f T~a~h{4) d aV  = ( ~  l ~ l ' # }  (1.3) 
I2 

(a a to be chosen appropriate) .  The fundamenta l  operators are extracted in 
Sections 6-8.  As starting points  we summarise in Sections 2 and 3 parts o f  the 
tetrad approach to 4-spinor calculus in  R iemann  space and some properties of  
the cosmological space-time, as far as this is necessary for further  reference. 
Section 2 will show that  the incorpora t ion  of  space-time curvature in  q u a n t u m  
mechanics  via the Dirac representa t ion is based on  the principle o f  minimal 
coupling. A discussion of  alternative approaches will be given in the Appendix .  

2. Dirac Fields in Curved Space-Time 

Pseudo-or thonormal  tetrad fields~ 

h~h~ga# =rlab = diag ( - 1 , - I , - 1 ,  + l ) , h ~ h ~  ab =ga~ (2.1a, b) 

with h~4) adjusted as tangent  vector  to a time-like congruence,  form an 
impor tan t  mathemat ica l  tool  for the in t roduc t ion  of  generally covariant  spinor 
fields, the fo rmula t ion  of  a general relativistic theory o f  measurement  (3 + 1 
formalism) and the description of  cosmological models  (compare e.g., Treder 
(1971)) .  

The tetrads hC~(x) span a local tangent  space at every point .  The componen ts  
of  a 4-spinor field W(x)  in a R iemann  space behave like scalars under  coordinate  
t r ans fo rmat ions .W(x)  is defined locally wi th  respect to the tangent  space. A 
proper o r thochronous  Lorentz  t ransformat ion  in this tangent  space, as 
represented by  a te t rad rota t ion,  induces a homomorph ic ,  un imodula r ,  
position dependent  spin-transformation according to § 

h~' = f2abh~, W '  = SW with f2aby a = SYbS -1 (2.2) 

$ Notations and conventions: A definition is indicated by : =. Signature of the metric 
tensor ga#: ( -  - - +). a, t3 . . . .  = 1 . . . . .  4 and &,ff . . . .  = 1, 2, 3 are tensor indices raised 
and lowered with gat 3. a, b . . . .  = 1 . . . . .  4 and a, b . . . .  = 1, 2, 3 are tetrad indices raised 
and lowered with T ab  = diag ( -  i. - 1, - i, + 1). The corresponding geometrical object is a 
Riemannian scalar with regard to a, b . . . . .  y : = {y~}, M(1) : = M a=l, M 1 : = M c~= 1. A, 
B . . . .  = 1 . . . . .  4 are spinor indices. ~PA, 3~B . . . .  are the components of~ ,Y a, . . . .  The 
latter are connected by matrix multiplication. Covariant derivatives of tensors and spinors 
are denoted by Ila. 

M(a[3) : = ½(Maf3 + Mt3a), Mlat3] : = ½ (Ma~ - M[3a). 
§ For a survey of the theory of spinors in curved space-time and a review of the 

literature see e.g. Bade & Jehle (1953), Britl & Wheeler (1957), Cap, Majerotto & 
Unteregger (1966) and Schmutzer (1968). 
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(~2a b = ~2ab(X), S = S(x)) where ya  are the usual Dirac matrices 

0y a 
y(ayb) = ~ab, - -  = 0. 

327 

(2.3a, b) 

The connection between the infinitesimal transformations is given explicitly by 

~2a b = 6ha + eba, e(ab ) = O, S = 1 + R,  R = ¼eabYaY b (2.4) 

The position dependent transformation behaviour of W(x) makes it 
necessary to define a non-trivial parallel propagation of W(x) (compare Weyl 
(1929)) and accordingly to introduce a covariant spinor derivative 

• ll~ = ~ + r ~ w  (2.5) 

The spinor affinity I'~ can thereby be formulated in terms of the respective 
tetrad field 

r ~  = ¼h~ll~h~bYbg a (2.6) 

The theory of the generally eovariant Dirac f ie ld  can be derived from a 
Lagrange density (no non-metric external fields according to A3) 

5¢= "V/(-g) T \W!,**Y • - ~ ' ~ , .  - (2.7) 

which is obtained from the special relativistic one by replacing partial deriva- 
tives by covariant derivatives (minimal  coupl ing)$.  The generalised Dirac 
metrices are introduced by 

a y(C~y~) yC~ :=ha Y , =gC~5 

Their covariant derivative vanishes because of (2.6) 

Oy ~ 
Y~,e := Ox e + r ~ y K  +rey~ _ y ~ r e  = 0 (2.9) 

(2.8a, b) 

The adjoined spinor Ct" is defined with the aid of Hermitesing matrix B 

OCt' ~ r ~  (2.t0a-c) • :=~*B,  Cy'C~ S-l ,  Ct, ll ~ = ~x ~ -  

$ This has the character of  an equivalence principle generalised to the spinorial prob- 
ability f ieldW: With regard to a local Lorentz system at an arbitrary point  P as defined b3 
a reference frame at P with h~a(P) lie = 0, the differential equat ions  at P for ,I, take the  
special relativistic form. Tetrad rota t ions  leading to the general case h~(P)lie * 0 are 
connected  with posi t ion dependent  spin t ransformat ions  which result in the replacement  
of  the  partial by the covariant spinor derivative according to the definit ion o f  the  latter. 



328 J. AUDRETSCH 

which for special ~/,a, with 

(y(4)ya)t  =y(4)ya,  y(4)-~ = y(4) (2.11) 

can chosen to be~ 

B = y(4)  (2 .12)  

From (2.7) we get the Dirac equations as field equations 

6 ~ 6 ~L~ mc mc - 
---~ = O, 6-~ = O, iVuWllu -- ~ W : 0, iWilu't "~t + ~ tit = 0 

(2.13a, b) 

The symmetric energy-momentum tensor T ~  is divergence free 

2 ~z~ 
Tat~ := x / - g  6g ~ ' Ta~31tB = 0 (2.t4a,  b) 

h 
TaG = t(a~), tap := ~ -  (t~YaWHt~ -- U~llt~YaW) (2.14c, d) 

The 4-current/~ is, because of  (2.9) and (2.13), divergence free as well 

Ja :=~Y~W, iatt~ = 0 (2.15a, b) 

The Lagrange density ~gq as well as TaG, j~ and the field equations (2.13) 
are, in consequence of (2.5) and (2.10c) with (2.6), invariant under the 
position dependent ~ab-S-transformations (2.2) and (2.10b). We mention the 
existence of an additional invariance under a global change of  the representation 
of  the ya-matrices: 

ya' = v y a v - 1 ,  ~Tt' = V ~ ,  U_.~' = ~ t v - t  ' OV ax---- S = 0. (2.16) 

These invariances of  the theory, together with the general coordinate invariant 
formulation, justify the choice of  special coordinates, specialY a and a special 
tetrad field h~(x) when actual calculations are carried out. 

3. Cosmological Reference Frame 

The evolution of  the universe can be described by the kinematics of  the 
cosmological substratum (approximating the motion of  galactic clusters to that 
of  a fluid). The 4-streamlines form a congruence of  time-like worldlines 

X~=X~(ya, ct), ~= 1 , 2 , 3  (3.1) 

ya  are three scalars labelling the respective worldline, ct is its arc length. The 
normalised tangent vectors 

u s := u~ua = 1 (3.2) 
~ct' 

describe the averaged 4-velocity of  the cosmic matter. 

:~ For the general case see Kofink f1949). 



QUANTUM MECHANICS IN AN EXPANDING UNIVERSE 329 

The isotropic homogeneous Friedmann model  of  assumption A 4 represents 
a good approximative description of  the universe. It is characterised by~ 

3 OR 
usll~ = ½®(gs~ - usu;~), O := u~,~ = R act 

The Hubble parameter (1 /R) (aR/ac t )  represents the relative change in time 
of  the distance between two galaxies (isotropic expansion). According to (3.3a) 
u s is, because of  co s~ = 0, orthogonal to a family of  space-like hypersurfaces 
~2. Furthermore, owing to ti a = 0, we can synchronise t globally so that ~2 
denotes events o f  equal t (cosmic time). The kinematics (3.3) of  the cosmic 
masses determines the line-element of  the space-time to be of  the form 

ds2 = gs~ dxS dx~ = - R  Z(t) do2 + c2 dt2 (3.4) 

where the t-independent de  is the line-element of  a 3-space of  constant curva- 
ture associated with ~2. We restrict ourselves according to A 4 ,  to the case of  
vanishing 3-curvature. 

We can re-label the wordlines (3.1) by introducing parameters ya  with the 
properties: The y&lines are geodesic and orthogonal to each other in the 
subspace ~2 with regard of  its metric ga~ - usu~. Furthermore, we introduce 
a tetradfieM h~(x)  by adjusting its vectors as tangent vectors to the congruence 
(3.1) and the y&lines in the subspaces: 

ax  s 1 ~x s 
s = u  s =  s = _ _ _ _  (3.5a, b) 

h(4) Oct '  hd R a y  d 

With regard to subsequent physical interpretations we note that the h~ 
represent the local frame of  reference o f  observers which are, because of  (3.5a), 
at rest relative to the galaxies, thus taking part at the cosmic expansion. The 
frames are globally synchronised by the cosmic time t which is also the com- 
mon proper time of  the observers. The tetrads are Fermi propagated in time. 
The curves of  constant observer numbers y~ with tangent vectors h~ form, in 
the global rest space ~2, a network of  lines which are parallel and orthogonal to 
each other with regard to the metric in the rest space. The corresponding dif- 
ferential properties of  the tetrad field as represented by the Ricci rotation 
coefficients 

are 

Elvhbhc, aabc --abae aabc := ha u u v = (3.6) 

® 
a(4)$~ = -~ r/g~, rest = 0 (3.7) 

$ (3.3) describes the following observational results: isotropic Hubble expansion 
((-) := uelle = 3R-1 ~R/act), absence of non-gravitational forces between the galaxies 
(~s := uSlteu e = 0)~ shear-free galaxy motion (os/3 := u(all~3) - tJ(su~) - ½(gs~ - usu[3)® = 
0). rotation-free galaxy motion (wst3 :=  u[o~llfi] - t ) [ s u f l ]  = 0 ) .  
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We note for further reference that (3.7) implies (71234 = N / - - g ) ,  ~ 

~7~Xha~ II xh(4)~ = 0 (3.8) 

Because o f  the invariance properties of  the spinor theory we may specialise the 
ha~-field of  Section 2 to be the one introduced above. With 

= ± .  l~cvbva (3.9) ~o~ 4Uabettot ~ ~ 

we obtain for I'rh := rc~hr~ 

O 
r,~ = 7 v ~ v  (4), r(4) = 0 (3.]0) 

D 

and hence 

Y(4)I'~ + r,~Y (4) = 0, 
(4 

= (4) (3.1 b) 
2 

4. HiIbert Space 

We follow the outline given in Section 1.3 and construct the Hilbert space 
structure of  our physical system out o f  the elements of  the general relativistic 
theory of  the Dirac fieldW(x) described in Section 2. To begin with, we 
postulate a connection between the state vector ( ~ } with 

(q~ l ' Iz)= 1 (4.1) 

and the spinorial field~Y(x). 
We restrict the following to Dirac solutions which are square integrable in 

the sense that the integral (d 3 V is the invariant 3-volume element) 

f jahc~(4)d3V = f Wt Wd3V (4.2) 
t2 ~2 

exists. TheseW(x) are, for fixed t, vectors of  the function Hilbert space Hf 
with the interior product 

(X, 0 )  : = y X  t Od3V (4.3) 
f2 

Wvanishes because of  (4.2) and As at the surface o• of  t2 at infinity 

tit ( ~ )  = 0 (4.4) 

¥: Furthermore we obtain from (3.7) that the h~ are collinear to Killing vectors 

while h~4 ) is collinear to a conformal Killing vector 

(++) ~(4)c~ := Rh(4)~. ~(4)(0dl/3) = (3R/8 xehe(4))gc~ 
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Furthermore W, as a Dirac solution, forms a divergence free current ]'~ (compare 
(2.15b)). This continuity equation leads, with Stokes's integral theorem, 
because of (4.4) and using (4.2) and (4.3) (h~4) is the normal of ~2), to 

g~- (W,W) = 0 (4.5) 

A normalisation 

(W, wit) = I (4 .6)  

o f  W on one hypersurface ~2 therefore remains preserved in time. 
The theory in Section 2 of Dirac solutions W with (4.2) and (4.6) is the 

generatisation of the special relativistic Dirac theory of the Dirac particle in 
the Schr6dinger picture and the Dirac spin-position representation. To incor- 
porate flat space-time as a limiting case we postulate that the A-component  
~"A (A = 1 . . . . .  4) o f  a normalised Dirac solution W(x  ) at a point  with observer 
parameters ya on the hypersurface t = const, is the profection o f  the time- 
dependent state vector I W )  = IW )t (SchrOdinger picture) on the Dirac spin- 
position eigenvector I'Y, A ) o f  a Hilbert space H: 

~gA(Y, t)= (A, Y [gs)t (4.7) 

The state vector I~P )t is accordingly attributed to the S2-hypersurface t = const. 
as a whole. H is the product space 

H = H ( ° )  x H (s) (4.8) 

associated with the whole space-time and I Y, A) is obtained as the formal 
product 

[Y, A)= [g>l A) (4.9) 

H (s) is thereby the usual four-dimensional spin-variable space and I A) its 
basis vectors (compare Messiah (1970)). Note the position independence (2.3b) 
of the 7 a. The ]Y)belong as unproper eigenvectors to the orbital-variable 
Hilbert space H(°). They are eigenvectors of the Dirac position operator which 
has the scalar observer parameters y~ as the continuous eigenvalue spectrum. 

Because of H/being a representation of H, the ]Y, A) form a complete 
basis of H 

4 

IIY, A)<A, Y I N # ( y )  = 1 (4.10) 
A = I  - 

#(y) is the measure function of the ya-spectrum. We obtain/l(y) from 

(W,W)  = ( 'P I q ~) (4 .11)  

with (4.3), (4.7) and inserting (4.10) (d 3 V = R3(t)dyO) dy(2) dy(3)) 

dl~ = R 3 (t) dy  (1) dy (2) dy (3) (4.12) 
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The measure function p( y) of  the y~-spectrum corresponding to the 
represen tation W(x ) of[q r) is time-dependent. 

The general relativistic Dirac fietdW(x) is as a spinorial field element of 
the unconnected local tangent u spaces of the manifold (compare Section 2). 
Accordingly W(x) shows the position dependent spin-transformation behaviom 
(2.2) with (2.4). This local dependence of W(x) does not make it necessary to 
attribute a different Hilbert space H or spin space H(s) to each point (as has 
been proposed by Utiyama (1965)) in order to be able to interpret W as a 
representation of a state vector. Instead we can describe the ~2ab-S- 
transformations entirely in H of (4.8) as 

with 

I~)-~ ],I~)' = U[q~) (4.13) 

4 4 

U= ~ ~ f lY, A)(B, Y[SAB(Y,t)dlJ(y) (4.14) 
A = I  B = I  • 

U operates in H(s) as well as in H(°) and reduces only for y&independent 
S-transformations to the special relativistic form. The unitarity Ut = U for 
tetrad rotations with fixed h~4) follows for the infinitesimal case from (2.4) 
and (2.11). 

5. Evolution Operator 

Contraction of (4.10) with (B, Y t leads with (4.2) to the following 
orthonormality conditions for the [Y, B) 

(B, Y' [ Y, A ) = 6AB6( 3)'(y -- y') R-3 (t) (5.1) 

where 6(3) is the usual three-dimensional Dirac function. It shows that the 
time-dependence of the measure function p(y) implies a time-dependence of 
the basis vectors IY, A)= IY, A)t. A representation of vectors and operators 
of H with regard to this basis contains therefore an additional time-dependence 
originating from the [Y, A). To simplify the dynamics and especially to assimi- 
late the description to the special relativistic one, we eliminate this additional 
time-dependence by changing to a y&representation with the trivial measure 
~t(y) = d3y := dy(1) dy(2) dy(3). The corresponding basis vectors I y, A) are 
complete and orthonormalised according to 

4 

(B,y '[y,A)=6AB6(3)(y--y ') ,  ~ I [ Y , A ) ( A , y [ d 3 y = I  
A = I  

(5.2a, b) 

tY, A) and tY, A) are associated with the same observer parameters y~ and 
therefore connected by 

[y, A) = C[Y, A) (5.3) 
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Comparison of (5.1) with (5.2) leads to 

C = R(t) 3/2 (5.4) 

where we have chosen the undetermined phase factor to be t. (5.3) can be 
interpreted as a basis transformation. Its unitarity is guaranteed by the ortho- 
normality relations (5. t) and (5.2a). The two representations of  the state vector 
]~ ) are, because of(4. 7) and (5.4), connected by 

~A(Y, t ) :=(A,  y l~) t ,  ~OA(Yot)=R3/2(t)g~.A(Y,,t) (5.5a, b) 

Accordingly, changing from W to q~ and using (3.1 l b) and (3.5), the Dirac 
equation (2.13a) becomes 

hi ~ = R ~y~ + mcz ~o (5.6) 

with 

ea :=V(4)VS, 13:=~,(4) (5.7) 

The conservation (4.1) of probability in time leads for state vectors ['~)t to a 
time evolution of the form 

alq ~ ) i 
. . . .  ~'lqz), J ' ?  = Y  (5.8a, b) 

at h 

governed by a Hermitean evolution operator ~-- (the dimension of J is that of 
an energy). Correspondingly the change in time of the expectation value 

:= t ('t' [d]q~)t of an operator s¢ is given by,~ 

a__~] = i a 
at ~ ( ' I , ] [ ~ , , d ]  fq?)+ (qz] ~1~)  (5.9) 

We obtain 3"for the physical system in question in postulating according to 
(1.2) that the general relativistic Dirac equation (5.6) represents the dynamical 
equation (5. 9a) in the lY, A )-representation. Contraction of (5.9a) with the 
time-independent (A, Y l and comparison with (5.5a) and (5.6) gives the 
following representation of the evolution operator 

, , [hc 1 Pn 3 +mC23AB) 8(3)(y--y ,') (5,10) <A,y IJ'ty, IT 
The representation differs from the special relativistic one only by the presence 
of the factor R (0 -1, neither the Hubbte parameter ®/3 nor the derivatives of 
the metric occur. 

:~ It is understood that we refer in the following statements about, d ,  to [,I,) t from 
the domain of definition of .-~. [,~¢, ,~'] := ,xe'.~-~d. 
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6. Energy 

We will introduce the operators,of energy, momentum and angular 
momentum in the SchriSdinger picture according to (1.3) in postulating that 
their mean values (expectation values)are the integrals of the corresponding 
classical expressions Ta~a~h~4~ (with T n~ of (2.14) and a n appropriately 
chosen) over the hypersurface f2. A symmetry property of the metrical field as 
expressed by a Killing vector ~ leads to a global conservation of  the integral 
value of Tneaah~(4). The identification above ensures that, with regard to metric 
symmetries, the quantum mechanical mean values behave like the integral values 
of  the respective classical quantities. A Killing vector field ~n = h~4) for 
instance would imply the conservation of the energy expectation value. In this 
sense the quantum mechanical mean values behave classically by construction, 
what may be interpreted as an incorporation of a correspondence principle. 

To simplify these hypersurface-integrats we introduce 

i 
:=WynYW, Y := - j-.t r?ae~,sy~Y~Y~Y 6, YY= 1 (6.1a-c) 

and restrict to 3, a which with (2.8a) obey not only (2.8b) but additionally 

ynyey~ = yng~-y + y'rgn~ _ y~g'ra + i~/c~'Sysy 

and therefore 

(6.2) 

yay~ = ga~ + 2 rTa~SY~'YsY (6.3) 

This special choice of  the T a is possible because of  the invariance of  the theory 
under V-transformations (2.16). With (6.2), (2.9) and because of ~?n~8 II e = 0 
we can write t[aet for Dirac solutions ~ as the divergence of a skew-symmetric 
tensor 

h ~},A 
t l~ : ]  = - ~" (%t3 ]K)lrx (6 .4 )  

With the aid of  Stokes's theorem we may therefore decompose the integral of 

Ze~ea°eh~4 ) = ( t e a  + t[nel)aah~4) (6.5) 

over g2 with an arbitrary a n as follows 

f To~aah~4) d3V= Jt +J2 + J3 

J1 := ~ taeh~4) J d3V, J2 :=~- J~(r~c~¢KXac~llxh~(4))d3V 

~2 ~2 

J3 := 7 rln~KaJ~aanhh~(4) d2 V = 0 (6.6) 
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0 is thereby the 2-surface of the 3-hypersurface ~2 at infinity, n u is4he unit 
vector normal to O with nabS4) = 0. d 3 V and d 2 V are the corresponding 
invariant infinitesimal 3- and 2-vohimes. Ja  vanishes because of (4.4). 

The mean value of the energy (kinetic plus rest-energy) as measured in the 
frame of  the cosmic observers of  Section 3 is obtained by choosing a s = h~4). 
Because of  (3.8) we have in this case J2 = 0. Evaluation of  the remaining 
integral J l  with (2.14d) and (5.5b) gives 

We reformulate the right-hand side by means of elements of  the Hilbert space. 
Because of (5.5a), (5.2) and (5.9a) together with the Hermitiecity (5.8b) of  ,Y-- 
we can write 

f Te~h~4)h~(4) d3V = ('I '  13-1'I~) (6.8) 
~2 

The operator of  the relative energy is therefore equal to the evaluation 
operator oY--of (5.11). 

The development of  the expectation value E = (q~ I~ -1~ )  in time is, 
according to (5.10), determined by (O/Ot)J-. With the explicit representation 
(5.11) of  ~--we obtain 

0E @ ] 0 @ y l ~  ) 1 0 g ( ~ ] . ~ _ i ~ ) +  1 0R 
i)-7 = = - R- a-t  ~ - - aT-mc2(~[~ [g  ,) (6.9) 

which reduces for vanishing rest mass m = 0 to the E(t)-taw for neutrinos~ 

a£ 1 OR_ 
. . . . .  E, E(t)  = const. R (t)-1 (6.10) 
~t R 3t 

This law is generally valid for arbitrary neutrino states ['I~). In the general case 
of  massive particle m ~ 0 no E(t)-law exists which is independent of  the state 
vector [~). This will be discussed for the case of  plane waves (eigenfunctions 
of  the linear momentum)  in a subsequent paper (Audretsch, 1973). We remark 
that the purely classical calculation, in which neutrinos are treated as structure- 
less point-particles moving on null-geodesics, leads as well to the result (5.9). 

7. Linear Momentum 

We obtain the operator firh of  the h r ' - component  of  the linear momentum 
by substituting a s = -h r~  in (6.6). J2 vanishes because of  (3.8). Using (3.5b), 

$ This result of a Hitbert space calculation is consistent with the purely field theoretica 
one: for m = 0 we have, with (2.13), T~a = 0. Because of (4.4) and (++) of footnote + 
(page 226) the value of R fa  To~h~4)hP(4 ) d3 V is independent of ~2. 
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(3.1 la) and (5.5b) we get for J1 

r~ a L " (7.1) 

which leads to the following representation for the momentum operator ~;n 

(A, yl~Pnly,B)=h 1 a 7R(t---) 3yrh 8AB6(Z)(Y--Y ') (7.2) 

since /~h is Hermitean ( /~rht  = /~vh). 
The explicit representations (7.2) and (5.10) show that firh commutes 

with ~-- 

[ J ' ,  /;rh] = 0 (7.3) 

From (7.2) we obtain for (a/at) ~rh 

+ a I B ) 1 aR(A, yl/e;nly,B) (7.4) ,Y ~ - ~ r ~  Y, - - R  at  

We therefore obtain with (5.9) that for arbitrary states t~ )t the time- 
dependence of the h~-components of the momentum is given by~ 

a~,~_ 1 an_ 
Prh, Pr~ (t) = const. R(t) -1 (7.5) 

~t R ~t 

This result is in accordance with the one of  the purely classical calculation for 
structureless point-particles moving on time-like geodesics. 

Because of  (7.2) the eigenfunction of f i ~  corresponding to the eigenvalue 
Prh is proportional to e ip~yrhRn -1 (no summation over rh); The wavelength 3, 
of  this wave, as measured by the cosmic observers, is RAy rn (compare (3.4)) 
with prhAyr~R~ -1 = 27r. For Dirac particles in an expanding universe the 
De Broglie relation 

2~'h 
p = - -  (7.6) X 

for eigenfunctions of  the momen tum therefore remains valid. 

8. Angular Momentum 

The special relativistic concept of  the total angular momentum of a field in 
a space-like hypersurface ~'2 can easily be generatised to curved space-time in a 
covariant manner if  the respective metric and topology are relatively simple. 
Consider in f2 a fixed base-point Po and an arbitrary point P, and let e u be a 

$ This result is again consistent with the corresponding field theoretical one, because 
(4.4) and (+) of footnote t (page 226) imply that the value ofR fs2 T~3h~nh~4) d3 V is 
independent of £2. 
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normalised vector at Po indicating a direction in ~2. We join Po and P by a 
3-geodesic, f~ (its uniqueness is assumed), transport eV 3-parallel along f# to 
P and form at P the tangent vector r ~ of f~ with x/c - rUru) being the geodesic 
3-distance Po--P along N .  By analogy with the special relativistic definition by 
a vector product, we now define at P the density of the eU-component of the 
angular momentum relative to the base-point Po by du eu with 

dU := _ r # ~ r ~ p ~ u ~  (8.1) 

Hereby is pC~ the density of the 4-momentum of the corresponding field 

pC~ := T~3u3, uaua = 1 (8.2) 

and u c~ the 4-velocity of the respective observer field which usually will be 
orthogonal to ~2. The eU-component Je of  the total angular momentum of the 
field with respect to an arbitrary base-point Po in the hypersurfaee £2 is 
obtained by integration over ~2 

Je = -  ~ J~ e u d a V = - ~  r~e~h{4~daV  (8.3) 
~2 ~2 

with 

B ~ := -~"~a~ eurTu ~ (8.4) 

Our cosmological space-time has Euclidian topology and the observer 
system in question is attributed hypersurface-orthogonally (h~4) = u s) to 
3-flat hypersurfaces ~ .  Accordingly, taking the observer with y~7 = 0 as origin 
Po we get after an adjustment x ~ = ya, x 4 = ct of the coordinate system 

p = (y(1),y(2),y(3), 0), X/(-r~ra) = X/(y (1)~ + y  (2)2 + y  (3)~) 

(8.5) 

To determine the h~-components Ja := -Jeha of ju  we introduce B~ as B u 
constructed with e ~ = ha ~. Evaluation of (8.4) leads to 

B(1)a = R 2(0, y(3), _y (2 ) ,  0) 

B(2)c ~ = R 2 ( - y  (3), 0 , y  (1), 0) 

B( 3)~ = R 2(y ( z), _y( l ) ,  0, 0) (8.6) 

A straightforward calculation shows that the B~ are Killing vectors 

Ba(~ LI~) = 0 (8.7) 

To calculate Ja according to (8.3) we make use of the decomposition (6.6). 
The structure (8.6) of B~ involves 

r/C~¢3 Y6BaB fl 3,h(4)8 = - 2h~ (8.8) 

.+ The prefix '3-' denotes construction with regard to the metric of the three- 
dimensional subsoace ~2. 
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SO that J2 does not vanish. To evaluate J2 we make use of W=Wth~4)'~'a 
(compare (2.10a) and (2.12)) and contract (6.3) withY. This leads with (6.1 c) 
and (2.18) to 

jKh~ = - h  W?h~oKW (8.9) 

where we have introduced 

:= ~ ~a/3"Y6°flvh(4)6, ~zv := iY[~Yv I (8.10) 

The space-like aa has the characteristic properties (spin-½ particle) 

(haax) - 1, X/(-6aa~) = X/(~)h (8.1 1) 

For ~ = 1 we have explicitly 

hi Y(2)Y (3) (8.12) h~l)aK = 6(1) = 2 

We complete the calculations of the example ~ = 1. (2.14d) gives with (3.1 la) 

--t~aB~h~(4) = - ~  W ? Ox ~ - eft B~ (8.13) 

With (8.6), (S.5b) and 

y(2) 3Y (3) _ y(3) ~ 

being the representation of an Hermitean operator we finally get 

J ( D = S q ~ ' [ ~ ( y ( 2 ) ~ - y ( 3 ' @ ) + ~ - - ~ X ( 2 ' Y ( 3 ' ] q ~ d a y  (8.14) 

The operator~ o f  the 8-component of" the total angular momentum is therefore 
equal to the special relativistic one 

x 8 ( a ) ( y -  y ' ) (8.15) 
with 

[ J a , J ' ]  = 0 (8.16) 

This implies, because of (5.10), the conservation o f  the expectation value of  the 
total angular momentum 

_ 
0-7 & = O ,  ~ := <'PlJa l'I'} (8.17) 
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The time-dependence (7.5) of the linear momentum and the time-dependence 
of the 3-distance in the definition of the total angular momentum as a cross 
product (compare (8.1)) cancel each other.~ The operator o f  the spin- 
components  is, according to (8. t 2) and (8.t 5), equal to the special relativistic 
one (a~s  are the components of o K) 

(A, y la~ ly',B) = h~B8 (3) ( y -  y') (8.18) 

Appendix  

Alternative approaches. One approach for constructing the elements of the 
above theory could consist of emphasisiflg classical-quantum analogies (com- 
pare De Witt (1952)) by means of generalised coordinates and momenta. We 
do not tbllow the usual procedure of quantising a classical particle which leads 
from Poisson brackets to commutation relations, because no satisfactory 
general relativistic model of a classical particle with spin is availab.e We prefer 
to deduce the algebra of the observables which should reflect the gravitational 
interaction instead of taking it as a postulated starting point. Another possi- 
bility for constructing the dynamical equation is to start from the irreducible 
representations of the symmetry group of the respective curved space-time 
(Wigner approach). This has been discussed by many authors for the examples 
of the De Sitter and Einstein space (compare, e.g., B6rner & Diirr (1969) and 
Kramer (1972)). We do not follow the lines of this approach because it enables 
no generalisation to less highly symmetric but physically more relevant space- 
times. Finally we have to mention that exact solutions of the general relativistic 
Dirac equation in a Robertson-Walker metric have been found for special 
matter distributions (eigenfunctions of the angular momentum) and special 
expansion laws (R(t)  = a + bt  by SchfiSdinger (1940) and Yaub (1937), 
R( t )  = e et by Taub (1937)). In this paper we have not been interested in 
obtaining further exact solutions but in discussing the structure of the theory 
and in deriving generally the behaviour of the fundamental observables. 
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